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Abstract
We study the reflection of narrow (in space) quantum wavepackets from
nonabsorptive mirrors (totally or partially reflecting). If the initial mean
value of the momentum component perpendicular to the mirror surface is
less than the momentum uncertainty, then the mean value of this component
gradually increases with time at the expense of shrinking the packet in the
momentum space. As a consequence, very slow particles moving initially in the
direction parallel to the mirror surface will be deflected to appreciable angles,
even when they pass at macroscopical distances from the mirror. We give
analytical expressions describing the asymptotical behaviour of wavefunctions
and density matrices in the coordinate and momentum representations for
arbitrary narrow initial packets. We show that the asymptotical mean values
and variances do not depend on the phases of the complex reflection and
transmission coefficients. Moreover, they are insensitive to the concrete form
of the reflective potential in the case of totally reflecting mirrors. For partially
reflecting mirrors we introduce the concept of conditional wavefunctions and
mean values. The dependences of the asymptotical values of different quantities
characterizing the packet (e.g. the ‘momentum transformation coefficient’ and
the ‘invariant uncertainty product’) on the parameters of the reflecting potential
(the height and width or characteristic length of the transition region) are
analysed in the examples of the potentials of Epstein’s type and their limit
cases (the ideal reflecting wall and the delta potential). A possibility for the
verification of the effect of quantum deflection in experiments with ultracold
atoms is briefly discussed.
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1. Introduction

Although different aspects of the evolution of quantum wavepackets in free space and in
external fields were investigated over the decades [1–14], this subject has not been exhausted
yet. Recently the phenomena of reflection and diffraction of matter waves from different
atomic mirrors or laser beams attracted attention due to the striking progress in experiments
with cold atoms [15–21]. However, in all those papers only plane waves or spatially wide
packets were considered. The aim of our paper is to study the peculiarities of the reflection
of narrow (in the coordinate space) and slow quantum packets from partially reflecting (but
nonabsorptive) mirrors. More precisely, we assume that the initial spread of the packet s,
its initial mean distance from the boundary xc and the initial mean velocity v0 satisfy the
conditions xc � s and v0 < h̄/(ms) (where m is the mass of the particle). Hitherto the
opposite condition 〈p̂(0)〉 � √

σp(0) (where p is the momentum component in the direction
perpendicular to the surface and σp is the variance of the momentum distribution) was assumed
from the very beginning in all studies: see, e.g., [12] and references therein. However, it was
shown recently [22] that, for slow narrow packets corresponding to ultracold particles, some
new interesting effects, such as quantum deflection from reflecting mirrors, could be observed.

Suppose that one throws a particle in the direction parallel to the surface of some
impenetrable wall. If it were a classical particle, it would not ‘feel’ the presence of the
wall at all. But in the quantum case the situation is different due to the ‘wave’ properties of the
‘particle’, represented by some ‘wavepacket’. It is well known that the packet rapidly spreads,
so that after some interval of time it will reach the boundary, and eventually all its plane-wave
components will be reflected back. As a consequence, the particle will be deflected from its
initial direction of motion. What is most impressive is the fact that the deflection angle can be
made arbitrarily large, depending on the initial velocity and the initial transverse uncertainty
of the particle position and, moreover, that it does not depend on the initial distance from the
boundary [22], which could be quite macroscopical (say, 10 cm, whereas the initial spread of
the packet in the transverse direction could be of the order of 10−5 cm). This means that the
quantum particle ‘feels’ the wall, even when it passes initially very far from it, in the region
free of any force. In a wide sense, this is an analogue of the famous Aharonov–Bohm effect,
when a charged particle is deflected by a localized magnetic flux, although it travels through
a region where there is no magnetic field. Both phenomena have the same origin: quantum
nonlocality and the existence of ‘wave properties’ of quantum objects.

In [22] the problem of ‘quantum deflection’ was considered for the model of an ideal
wall, equivalent to the boundary condition ψ(0, t) ≡ 0, and under several restrictions, such as
zero initial mean value of the transverse component of momentum, zero correlation coefficient
between the coordinate and momentum in the initial state, and strongly localized initial packet
describing a pure quantum state. Some of these restrictions were removed in a more detailed
study [23], where it was shown explicitly that the effect exists only under the condition
〈p̂(0)〉 � √

σp(0). Nonetheless, since the infinite potential barrier is an idealization, the
question remains, whether the effect could exist in the case of realistic mirrors. The main aim
of the present paper is to show that the effect of quantum deflection is robust enough against
possible nonperfectness of the mirror, as well as against the nonpurity of quantum states.

The plan of the paper is as follows. In section 2 we give analytical expressions describing
the asymptotical behaviour of narrow initial packets (pure and mixed) reflected from arbitrary
nonabsorptive mirrors, showing that the main characteristics of the effect of deflection are
insensitive to the concrete form of the reflective potential in the case of totally reflecting mirrors.
For partially reflecting mirrors we introduce the concept of ‘conditional’ wavefunctions and
mean values. In section 3 we consider the concrete examples of the Epstein potentials, which
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have explicit analytical expressions for the reflection coefficient: the smooth potential step of
finite height, the cosh−2 potential and its limit case—the delta potential. Also, an example of a
wide packet reflected from the ideal boundary shows a qualitative difference in the behaviour
of narrow and wide packets. The results of our study are analysed in section 4, where the
possibility of verifying the effect in experiments with ultracold atoms is discussed and some
new problems to be solved are also pointed out.

2. Reflection of packets from arbitrary nonabsorptive mirrors

In the generic case, the detailed evolution of wavepackets reflected from a non-ideal mirror
can be traced only in the framework of approximate or numerical solutions of the Schrödinger
equation. However, the asymptotical behaviour of initial narrow packets can be calculated in
practice for any physically reasonable potential.

We suppose that the potential related to the mirror depends only on the coordinate x in
the direction perpendicular to the mirror surface. In this case, the mean value of the parallel
component of momentum pz (where z is the coordinate along the surface in the direction of
the motion of the particle) does not change with time. If the initial (at t = 0) distributions
in the x and z directions are uncorrelated, they will remain uncorrelated for t > 0 as well.
Assuming that the ‘longitudinal’ momentum pz is defined sufficiently well (i.e. that the part
of the initial wavefunction responsible for the z coordinate is close to a plane wave), we may
confine ourselves to studying the evolution of the one-dimensional wavefunction ψ(x, t), using
the frame moving with the velocity vz = pz/m and replacing the time variable t by mz/pz

when interpreting the results in terms of the wavepackets moving in three dimensions (the
third space variable, perpendicular to x and z, but also parallel to the surface, is obviously
inessential).

We assume for simplicity that the potential describing the mirror is different from zero
in a finite domain −d < x < 0 (actually, it must decrease sufficiently rapidly outside this
domain: see below). A complete set of solutions of the Schrödinger equation in the regions
of free motion x > 0 and x < −d can be chosen as superpositions of incident and reflected
plane waves going to the right and to the left:

ψk = e−ik2 t̃

√
2π

×
{

e−ikx + χ(k)eikx, x > 0
ζ(k)e−ikx, x < −d,

(1)

ψ−k = e−ik2 t̃

√
2π

×
{

ζ(−k)eikx, x > 0
eikx + χ(−k)e−ikx, x < −d,

(2)

where k > 0 and t̃ ≡ h̄t/(2m). χ(k) and ζ(k) are the amplitude reflection and transmission
coefficients, respectively, satisfying the condition

|ζ(k)|2 + |χ(k)|2 ≡ 1. (3)

The assumption that the motion is free for x > 0 and x < −d is not of principal importance,
although it permits us to simplify some formulae. Actually, (1) and (2) are asymptotic forms of
the solution at x → ±∞ for any rapidly decaying potential (the comparison with the exactly
solvable models shows that it is sufficient to assume that the potential decays as x−2 or faster).

The solutions (1) and (2) are normalized as follows [24]:∫
ψk(x)ψ∗

k′(x) dx = δ(k − k′), (4)

and condition (3) is important for such a normalization. Physically, this condition means
the absence of absorption in the mirror. Mathematically, it is equivalent to the unitarity of
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evolution. The requirement of unitarity results in many identities connecting the reflection and
transmission coefficients for positive and negative values of k [25–27]. In particular,

ζ(k) = ζ(−k), |χ(k)|2 = |χ(−k)|2, (5)

ζ(k)χ∗(k) + ζ ∗(k)χ(−k) = 0. (6)

The first equality in (5) follows from the reality of the potential, whereas (6) is equivalent to
the orthogonality of the states ψk and ψ−k .

Using the general formula for the time-dependent propagator of the Schrödinger equation
in the form of an integral over a complete set of orthonormal states:

G(x, x ′; t) =
∫ ∞

−∞
ψk(x, t)ψ∗

k (x ′, 0) dk (7)

and expressions (1) and (2), we can write explicit integral representations for the propagator
in the regions x > 0 and x < −d in terms of the reflection and transmission coefficients.
There are four different forms G++, G+−, G−+ and G−− dependent on the signs of the first and
second spatial arguments of the propagator. However, for the packets localized initially totally
to the right of the mirror, we need only two forms G++ and G−+. Taking into account the
identities (3) and (5), one can verify that the part of the propagator G++(x, x ′; t) for positive
values of x and x ′ is given by the formula

G++(x, x ′; t) =
∫ ∞

0

dk

2π
e−ik2 t̃

[
eik(x−x ′) + e−ik(x−x ′) + χ(k)eik(x+x ′) + χ∗(k)e−ik(x+x ′)]. (8)

Using the identity (6) one can also find the part of the propagator G−+(x, x ′; t) for x < −d

and x ′ > 0:

G−+(x, x ′; t) =
∫ ∞

0

dk

2π
e−ik2 t̃

[
ζ(k)e−ik(x−x ′) + ζ ∗(k)eik(x−x ′)]. (9)

We cannot write an explicit expression for the propagator for −d < x, x ′ < 0 without
knowledge of the explicit form of the mirror potential and finding the solutions of the
Schrödinger equation for −d < x < 0. Hence we cannot calculate the evolution of initial
wide packets, which were located close to the mirror. Also we cannot follow the evolution
of the wavepacket when it reaches the mirror. However, considering initial packets localized
far from the mirror, it is sufficient to know the parts of the propagator (8) and (9) to find the
asymptotical behaviour of the packet, bearing in mind that as t → ∞, only a negligible part
of the packet remains in the vicinity of the mirror (of course, this implies implicitly some
limitations on the admissible forms of the mirror potential, such as an absence of bound states,
for example).

Applying the propagators (8) and (9) to an initial packet ψ0(x
′) localized far to the right

from the mirror, one obtains

ψ(x > 0, t) =
∫ ∞

0

dk√
2π

{
eikx[ϕ0(k) + χ(k)ϕ0(−k)] + e−ikx[ϕ0(−k) + χ∗(k)ϕ0(k)]

}
e−ik2 t̃ ,

(10)

ψ(x < −d, t) =
∫ ∞

0

dk√
2π

[
eikxζ ∗(k)ϕ0(k) + e−ikxζ(k)ϕ0(−k)

]
e−ik2 t̃ , (11)

where

ϕ0(k) =
∫

dx√
2π

ψ0(x)e−ikx (12)

is the initial wavefunction in the momentum (wavenumber) representation (the integration can
be extended to the whole axis, if ψ0(x) is localized far from the mirror).
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When t → ∞, the part of the integrand in (10) containing the term exp(−ikx − ik2 t̃ )

strongly oscillates, due to these oscillations the contribution of this part ‘dies out’. The same
happens with the part of the integrand in (11) containing the term exp(ikx−ik2 t̃ ). Consequently,
asymptotically the coordinate wavefunction tends to the expression

ψas(x, t) =
∫ ∞

0

dk√
2π

e−ik2 t̃ ×
{

[ϕ0(k) + χ(k)ϕ0(−k)]eikx, x > 0
ζ(k)ϕ0(−k)e−ikx, x < −d

(13)

which is nonzero, because the integrands have the stationary points k∗ = |x|/(2t̃ ). The
asymptotical wavefunction consists of two packets: one (the first line in the expression above)
moves to the right, being located mainly far to the right from the point x = 0, and another (the
second line) moves to the left, being located far to the left from the point x = 0. The ‘tails’
of these packets in the region close to x = 0 become negligibly small in the limit t → ∞.
Therefore, calculating the Fourier transform of the function (13) one can extend the limits
of integration over dx from −∞ to ∞ for each packet. Then integrals over dx are reduced
to delta functions, and we obtain the following asymptotical wavefunction in the momentum
representation (remember that ζ(k) = ζ(−k)):

ϕas(k) = e−ik2 t̃ ×
{

[ϕ0(k) + χ(k)ϕ0(−k)], k > 0

ζ(k)ϕ0(k), k < 0.
(14)

If the initial packet is localized near the ‘central point’ xc, then one can write

ψ0(x) = ψ̃0(x − xc), ϕ0(k) = ϕ̃0(k) exp(−ikxc), (15)

where function ϕ̃0(k) does not depend on xc. Therefore

ϕas(k) = e−ik2 t̃ ×
{

[ϕ̃0(k)e−ikxc + χ(k)ϕ̃0(−k)eikxc ], k > 0
ζ(k)ϕ̃0(k)e−ikxc , k < 0.

(16)

The asymptotical momentum distribution Pas(k) = |ϕas(k)|2 for k > 0 is

Pas(k) = |ϕ̃0(k)|2 + |ϕ̃0(−k)|2 + 2 Re[ϕ̃∗
0 (k)ϕ̃0(−k)χ(k)e2ikxc ]. (17)

The last term in (17) depends on the initial position of the packet and it strongly oscillates
when xc → ∞. But this strongly oscillating term cannot affect the observable integral
characteristics of the packet, such as the asymptotical mean momentum or the momentum
dispersion, if initially the packet was far enough from the mirror (because the argument of
the exponential function kxc has an order of xc/s � 1 in the region of k space which yields
the main contribution to the integrals containing Pas(k), where s is the initial characteristic
width of the packet in the coordinate space). Hence in the asymptotical regime one can use a
simplified averaged (nonoscillating) distribution

Pas(k) =
{ |ϕ̃0(k)|2 + |χ(k)ϕ̃0(−k)|2, k > 0

|ζ(k)ϕ̃0(k)|2, k < 0.
(18)

Note that the asymptotical momentum distribution depends only on absolute values of the
reflection and transmission coefficients and not on their phases.

For totally reflecting mirrors (ζ(k) ≡ 0, i.e. for potentials going to ∞ as x → −∞) the
averaged asymptotical momentum distribution is

Pas(k) =
{

0, k < 0
|ϕ̃0(k)|2 + |ϕ̃0(−k)|2, k > 0,

(19)

and it depends neither on the initial position of the packet nor on the characteristics of a totally
reflecting mirror (i.e. on the concrete form of the reflecting potential V (x) or the phase of the
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reflection coefficient χ(k)). For any totally reflecting mirror the asymptotical mean value of
the wavenumber is the same as in the case of the ideal mirror studied in detail in [22, 23]:

〈k∞〉W =
∫ ∞

0
k[|ϕ̃0(k)|2 + |ϕ̃0(−k)|2] dk, (20)

where the suffix W means the case of an ideal impenetrable wall. The initial mean value is

〈k(0)〉 =
∫ ∞

−∞
k|ϕ̃0(k)|2 dk =

∫ ∞

0
k[|ϕ̃0(k)|2 − |ϕ̃0(−k)|2] dk, (21)

whereas

〈k2
∞〉 = 〈k2(0)〉 =

∫ ∞

0
k2[|ϕ̃0(k)|2 + |ϕ̃0(−k)|2] dk. (22)

The concrete form of the totally reflecting potential is important only for the knowledge of the
details of evolution in the intermediate regime (e.g. the time of approaching the asymptotical
state) and the details of oscillations in the exact (unaveraged) distributions, such as (17).

2.1. Momentum transformation coefficient

If the initial momentum distribution is localized near some negative value −|k0| ∼ 〈k(0)〉, then
the asymptotical distribution has practically the same form, but it is localized nearby |k0|, so that
〈k∞〉W ≈ −〈k(0)〉. However, if |k0| is less than the spread of the initial momentum distribution√

σk , then the form of the final distribution differs significantly from the initial one, and 〈k∞〉W
can be quite different from |〈k(0)〉|, especially if the last quantity is close to zero. The changes of
the absolute value of the mean momentum and the width of the momentum distribution function
can be characterized quantitatively by the ‘mean momentum transformation coefficient’ η and
the ‘momentum variance transformation coefficient’ τ , respectively:

η ≡ 〈p̂(∞)〉2 − 〈p̂(0)〉2

〈p̂2(0)〉 , τ ≡ σp(0) − σp(∞)

σp(0)
= 〈p̂(∞)〉2 − 〈p̂(0)〉2

σp(0)
. (23)

Consider, for example, the initial narrow Gaussian packet:

|ψ(x, 0)|2 = (πs2)−1/2 exp[−(x − xc)
2/s2], xc � s, (24)

|ϕ̃0(k̃)|2 = π−1/2 exp[−(k̃ − k0)
2], k̃ = ps/(mh̄). (25)

In this case

〈k̃(∞)〉 = π−1/2 exp(−2k2
0) + k0 erf(k0), (26)

where the error function is defined as [28]

erf(z) = 2π−1/2
∫ z

0
exp(−y2) dy. (27)

Both coefficients, η and τ , rapidly go to zero if |k0| � 1 (note that (26) is an even function
of k0):

η ≈ − 2 exp(−k2
0)

|k0|√π
, τ ≈ − 4|k0|√

π
e−p2

0 , |k0| � 1.

The change of the absolute value of the momentum for the Gaussian states is maximal
for k0 = 0, when τ = η = η∗ = 2/π ≈ 0.64. However, choosing proper initial states,
one can obtain the values of η and τ arbitrarily close to 1 (for the totally reflecting boundary).
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Figure 1. The initial momentum distribution for the ‘waveguide’ packets (29) with n = 1 (broken
curve) and n = 9 (full curve); k0 = 0, s = 1.

Suppose that the particle left some atomic trap passing inside a long planar waveguide of width
s. Then the initial coordinate wavefunction ψ̃0(y) has the form (for odd modes, n = 1, 3, 5, . . .)

ψ̃0(y) =
{ √

(2/s) eik0y cos(nπy/s), |y| < s/2,

0, |y| > s/2,
(28)

so that the initial momentum distribution depends on the wavenumber k as

P0(k) = 4πsn2 cos2[s(k − k0)/2]

[(nπ)2 − s2(k − k0)2]2
, 〈k̂(0)〉 = k0, σk(0) = (nπ/s)2. (29)

For k0 = 0 and n � 1, the function (29) has high and sharp maxima at kn = ±nπ/s (the
ratio P(kn)/P(0) equals π2n2/16, whereas the width of the peak is of the order of π/s: see
figure 1). The asymptotical value of the mean momentum equals

〈k(∞)〉 = 1

π2ns
{(nπ)2[Si(nπ − k0s) + Si(nπ + k0s)]

+ nπk0s[Si(nπ + k0s) − Si(nπ − k0s)]

+ k0s[Cin(nπ + k0s) − Cin(nπ − k0s)] − 2nπ [1 + cos(k0s)]},
Cin(z) =

∫ z

0

1 − cos(t)

t
dt, Si(z) =

∫ z

0

sin(t)

t
dt.

(30)

The momentum transformation coefficient η (23) is maximal for k0 = 0, when

〈k(∞)〉 = 2

π2ns
[(nπ)2 Si(nπ) − 2nπ ].

For n � 1, Si(nπ) = π/2 + 1/(nπ) + · · · , n odd, and the coefficient η can be made as close
to unity as desired:

〈k(∞)〉 = nπ

s

[
1 − 2

nπ2
+ · · ·

]
, ηmax = 1 − 4

nπ2
+ · · · .

In contrast, if |k0|s/(nπ) � 1, then equation (30) yields 〈k(∞)〉 = |k0| + O(k−2
0 ), so that

τ ∼ |kn/k0| and η ∼ |kn/k0|3. In the case of even waveguide modes we have similar
relations: one should replace cos by sin in equations (28) and (29), and change the sign
before cos in the last line of equation (30), taking n = 2, 4, . . . . The dependence of
the momentum transformation coefficient (23) on the normalized initial mean momentum,
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0.0

0.5

1.0

~

η
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Figure 2. The momentum transformation coefficient (23) versus the normalized initial mean
momentum, p̃0 ≡ 〈p̂(0)〉/[σp(0)]1/2, for different initial localized states: Gaussian packet (24)
(dotted curve assuming negative values for p̃0 > 1), ‘waveguide’ packet (29) with n = 1 (full
curve) and ‘waveguide’ packet (29) with n = 5 (broken curve).

p̃0 ≡ 〈p̂(0)〉/√σp(0), for different initial states is shown in figure 2. It is clearly seen that
significant changes of the momentum distribution, resulting in a significant deflection, can be
observed only for p̃0 � 1.

2.2. Partially reflecting mirrors: standard and ‘conditional’ mean values

For a partially reflecting mirror, there is a nonzero asymptotical probability to find the particle
to the left from the barrier

∫ −d

−∞ |ψas(x)|2 dx. Using equation (13) for ψas(x) in the region
x < −d , we can formally extend the integration over dx to +∞, because the added region
does not contribute to the integral in the limit t → ∞. Thus we arrive at the expressions for
the total asymptotical probabilities of finding the particle to the left (L) and to the right (R)
from the barrier (mirror), which have a clear physical interpretation:

L =
∫ ∞

0
|ζ(k)|2|ϕ̃0(−k)|2 dk = 1 − R, (31)

R =
∫ ∞

0
[|ϕ̃0(k)|2 + |χ(k)|2|ϕ̃0(−k)|2] dk. (32)

For partially reflecting mirrors we have

〈k∞〉 =
∫ ∞

0
k dk[|ϕ̃0(k)|2 + (|χ(k)|2 − |ζ(k)|2)|ϕ̃0(−k)|2], (33)

whereas 〈k2
∞〉 still equals 〈k2(0)〉. Formula (33) is an easily verified consequence of the

standard definition of the mean value 〈k∞〉 = ∫ ∞
−∞ kPas(k) dk. However, this definition,

where integration is performed over all points in the momentum (or, equivalently, coordinate)
space from −∞ to +∞, is based on the implicit assumption that one can perform measurements
of the observables in the asymptotical state in any region of the coordinate and momentum
spaces, in particular in the region x < −d behind the mirror. One can imagine another
situation, when only the semispace x > 0 is accessible for experiments (actually, it seems
even more adequate in the case of experiments with cold atoms, when a particle striking
the mirror and passing through it or absorbed by it is lost for the further measurements).
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In such a case, the asymptotical state is described by the part of the total wavefunction given
in the first line on the right-hand side of equation (13) in the coordinate representation and
by the first line of equation (14) in the momentum representation. Obviously, these reduced
functions must be renormalized by dividing them by the factor

√
R (32). If R is significantly

different from 1, then the ‘conditional’ mean values of observables calculated with the aid of
the reduced probabilities (we shall supply them with a suffix R) turn out to be quite different
from the ‘unconditional’ ones2:

〈kn
∞〉R = 1

R

∫ ∞

0
kn dk[|ϕ̃0(k)|2 + |χ(k)|2|ϕ̃0(−k)|2]. (34)

The difference between unconditional and conditional mean values becomes significant for
weakly reflecting mirrors, when |χ(k)| � 1 for those values of k which yield the main
contribution to the integrals. For example, for symmetrical initial distribution ϕ̃0(k) = ϕ̃0(−k),
the unconditional momentum transformation coefficient η (23) is small. Under the same
conditions, R is close to 1/2, therefore 〈k∞〉R ≈ 〈k∞〉W . Hence the conditional transformation
coefficient is approximately the same as in the case of an ideal boundary. If initially
ϕ̃0(k) � ϕ̃0(−k) for k > 0 (i.e. the particle approaches the mirror), then obviously R � 1 for
|χ(k)| � 1. In this case 〈k∞〉 ≈ 〈k(0)〉 < 0, while 〈k∞〉R is positive.

Consider, for the sake of simplicity, a symmetrical and real initial distribution ϕ̃0(k) =
ϕ̃0(−k), which ensures the zero value of the initial mean momentum. Calculating the mean
values in the momentum representation with the aid of the wavefunction (16), we obtain the
following leading terms for t → ∞ (the omitted terms either decrease at least as t−1 or they
are much less than time-independent terms preserved in the expressions below):

〈x〉 = h̄〈k∞〉t/m + 2xcL, 〈x2〉 = h̄2〈k2〉t2/m2 + x2
c , (35)

〈x̂p̂ + p̂x̂〉 = 2h̄2〈k2〉t/m, (36)

where3

〈k∞〉 = 2
∫ ∞

0
k |χ(k)|2|ϕ̃0(k)|2 dk, 〈k2〉 = 2

∫ ∞

0
k2 |ϕ̃0(k)|2 dk. (37)

Calculating the conditional mean values we obtain the following expressions:

〈x〉R = h̄〈k∞〉Rt/m + xc

L
R

, 〈x2〉R = h̄2〈k2〉Rt2/m2 + x2
c + 2h̄xct
/m, (38)

〈x̂p̂ + p̂x̂〉R = 2h̄2〈k2〉Rt/m + h̄xc
, (39)

where

〈kn
∞〉R = 1

R

∫ ∞

0
kn(1 + |χ(k)|2)|ϕ̃0(k)|2 dk, n = 1, 2, (40)


 = 1

R

∫ ∞

0
k |ζ(k)|2|ϕ̃0(k)|2 dk = 〈k∞〉W

R
− 〈k∞〉R. (41)

2 Similar ideas were discussed in [29] in connection with the tunnelling problem. However, the ‘conditional
probabilites’ introduced in [29] were complex in the generic case.
3 Remember that in the momentum representation the coordinate operator is x̂ = i∂/∂k. If one calculated only
derivatives of the exponential functions in (16), then imaginary terms in the second-order moments could appear at
first glance. However, these terms are cancelled if one takes into account the terms ∂ϕ̃0(k)/∂k. Since reflection and
transmission coefficients do not depend on xc , their derivatives with respect to k give corrections which are small
compared with terms proportional to time or xc .
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2.3. Asymptotical density matrices of mixed quantum states

Until now, we considered pure quantum states described in terms of the wavefunction. But the
states created in real experiments are hardly perfectly pure: soon they are quantum mixtures
described in terms of the density matrices ρ(x, x ′) = ρ∗(x ′, x). Their evolution is governed
by the double integral

ρ(x, x ′, t) =
∫ ∫

G(x, y, t)G∗(x ′, y ′, t)ρ(y, y ′, 0) dy dy ′. (42)

The calculations in this case are more tedious than for pure states, but the final result is
quite expected: it is enough to replace formally the product ψas(x)ψ∗

as(x
′) by ρas(x, x ′). For

x, x ′ > 0 we obtain

ρ++
as (x, x ′, t) =

∫ ∞

0

dk dk′

2π
exp[i(kx − k′x ′) − it̃ (k2 − k′2)]

× [χ(k)ρ0(−k, k′) + χ∗(k′)ρ0(k, −k′) + ρ0(k, k′) + χ(k)χ∗(k′)ρ0(−k, −k′)].

The Fourier transform of ρ(x, x ′) gives the density matrix in the momentum representation

ρ(k, k′, t) =
∫

dx dx ′

2π
ρ(x, x ′, t) exp[−i(kx − k′x ′)]. (43)

The initial density matrices localized near the central point xc can be written as

ρ0(x, x ′) = ρ̃0(x − xc, x
′ − xc), ρ0(k, k′) = ρ̃0(k, k′) exp[−ixc(k − k′)],

where the function ρ̃0(k, k′) does not depend on xc. Making the same approximations
as in the preceding subsections, and suppressing strongly oscillating terms proportional to
exp[±ixc(k + k′)] with kk′ > 0, we find the averaged asymptotical density matrices

ρ++
as (k, k′, t) = exp[−it̃ (k2 − k′2)]{ρ̃0(k, k′) exp[−ixc(k − k′)]

+ χ(k)χ∗(k′)ρ̃0(−k, −k′) exp[−ixc(k
′ − k)]}, (44)

ρ−−
as (k, k′, t) = ζ(k)ζ ∗(k′)ρ̃0(k, k′) exp[−it̃ (k2 − k′2) − ixc(k − k′)], (45)

where the superscripts give the signs of the first and second arguments. We see that the diagonal
elements do not depend on the phases of the coefficients χ(k) and ζ(k) (we do not bring the
expressions for ρ+−

as (k, k′, t) and ρ−+
as (k, k′, t) because they do not contribute to the diagonal

elements).

3. Examples: reflection of Gaussian packets

The effect of quantum deflection was discovered in [22] and studied in [23] in the framework
of the analysis of exact solutions of the time-dependent Schrödinger equation in the presence
of an ideal boundary. One could have some doubts concerning the physical meaning of such
a model, believing it to be oversimplified. Indeed, the ideal wall potential possesses two
unrealistic features: it has an infinite height and zero extension of the transition region. In this
section, using the general formulae derived in the preceding section, we analyse two families of
smooth potentials with finite heights, demonstrating explicitly that the model of ideal boundary
is the well defined limit of more realistic potentials. The first family describes smooth potential
steps, which can be considered as the models of sufficiently thick barriers (mirrors):

V1(x) = V0/(1 + ex/w). (46)

The second potential can be treated as a model of a thin mirror:

V2(x) = V0/ cosh2(x/w). (47)
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Our choice is explained by two circumstances. Firstly, both potentials are the special cases
of the known family of Epstein’s potentials [30] admitting exact solutions of the stationary
Schrödinger equation [24, 31]. Secondly, both potentials have exponential ‘tails’, which is a
typical feature of the ‘evanescent mirrors’ frequently used in the experiments with ultracold
atoms [19, 21, 32–35].

In the preceding section we have seen that the momentum transformation coefficient is
essentially different from zero only under the condition 〈p̂(0)〉 � √

σp(0), we shall consider
hereafter the case of 〈p̂(0)〉 = 0. Moreover, we confine ourselves to a simple example of the
initial mixed Gaussian state with real parameters, which has zero initial average momentum
and zero initial correlation coefficient between the coordinate and momentum (the influence
of this correlation coefficient was studied in [23] in the special case of an ideal wall):

ρ(y, y ′, 0) = 1

s
√

π
exp

{
− 1

s2

[
y2 + y ′2

2(1 − λ)
− λyy ′

1 − λ
− xc(y + y ′) + x2

c

]}
, (48)

where s is the initial width of the packet in the coordinate space, xc is its initial mean position
and the parameter λ (0 � λ < 1) is responsible for the quantum impurity (which is conserved
in time in the absence of dissipation):

C ≡ Tr ρ̂2 =
√

1 − λ

1 + λ
, 〈p̃2(0)〉 = σp(0) = h̄2

2s2C2
. (49)

The state (48) possesses the symmetrical momentum distribution

ρ0(p̃, p̃) = π−1/2 exp(−p̃2) = ρ0(−p̃, −p̃), p̃ = psC/h̄. (50)

The specific feature of the Gaussian distribution is that the ‘purity’ C can be included in the
definition of the scaled dimensionless momentum variable p̃. For the symmetrical distributions,
the formulae for the mean values and the probability of staying to the right of the barrier can
be simplified as follows:

〈k∞〉 = 2
∫ ∞

0
k dk |χ(k)|2ρ0(k, k), (51)

〈k∞〉R = 1

R

∫ ∞

0
k dk (1 + |χ(k)|2)ρ0(k, k), (52)

〈k2
∞〉 = 2

∫ ∞

0
k2 dk ρ0(k, k), (53)

〈k2
∞〉R = 1

R

∫ ∞

0
k2 dk (1 + |χ(k)|2)ρ0(k, k), (54)

R = 1
2 +

∫ ∞

0
|χ(k)|2ρ0(k, k) dk. (55)

3.1. Potential steps

In the case of potential (46) the reflection coefficient depends on the scaled variable p̃ as [24,31]
(k > 0)

|χ1(p̃)|2 =




1, p̃2 � κ∣∣∣∣ sinh[πα(p̃ −
√

p̃2 − κ)]

sinh[πα(p̃ +
√

p̃2 − κ)]

∣∣∣∣
2

, p̃2 � κ
(56)

where

κ ≡ 2mV0s
2C2/h̄2, α ≡ w/(sC). (57)
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The momentum transformation coefficient (23) for the potential (46) is

η1 = 2

π

(
1 − e−κ +

∫ ∞

κ

∣∣∣∣ sinh[πα(
√

z − √
z − κ)]

sinh[πα(
√

z +
√

z − κ)]

∣∣∣∣
2

e−z dz

)2

. (58)

Formally, the infinitely high potential wall corresponds to κ = ∞. However, already for κ ≈ 1
(i.e. if the barrier is only two times higher than the mean energy of the packet 〈p̃2(0)〉/(2m))
the coefficient η equals about 50% of its maximal value η∗ = 2/π , and |η∗ − η|/η∗ < 10%
for κ > 3, independently of the parameter α characterizing the ‘sharpness’ of the potential.

3.2. ‘Thin mirror’ model

In the case of a ‘thin-mirror’ potential (47) the reflection coefficient is less than 1 for any value
of the dimensionless momentum p̃ [24]:

|χ2(p̃)|2 = A
A + sinh2(παp̃)

, A = cos2

(
π

2

√
1 − 4κα2

)
, (59)

where α and κ are the same as in equation (57). If the argument of the square root in the
definition of the coefficient A is negative, then cos should be replaced by cosh. The momentum
transformation coefficient is

η2 = 2

π

∣∣∣∣
∫ ∞

0

Ae−zdz

A + sinh2(πα
√

z)

∣∣∣∣
2

. (60)

If α is of the order of unity (or larger) and κ > 1, then A ≈ cosh2(πα
√

κ). Due to the
factor e−z in the integrand of (60), the main contribution to the integral is given by the interval
0 < z < z∗ ∼ 1. If the ratio κ/z∗ exceeds the unit value, then A/[A + sinh2(πα

√
z)] ≈ 1 for

0 < z < z∗, and the integral is close to 1, again independently of α.
Typical dependences of the mean momentum transformation coefficient (23) on the

dimensionless height of the potentials κ for the fixed values of the dimensional width α are
given in figure 3. Two upper curves correspond to the step potential (46), whose widths differ
by four orders of magnitude: α = 0.001 (sharp potential step) and α = 10. Nonetheless,
both curves are very close for any value of κ . Moreover, for κ > 4 the parameter η becomes
very close to the maximal value 2/π corresponding to the infinitely high and sharp potential
wall. Four lower curves correspond to the ‘pulse-like’ potential (47) (note the ‘inverse’ order
of curves with respect to the potential step case). If the ‘thickness’ of the barrier is of the
order of the initial spread of the packet (48) in the coordinate space (α ∼ 1) or larger, then the
coefficient η becomes close to the limit value for κ > 4, as well as in the potential step case.
For α = 10 (and greater) the curves corresponding to the potentials (46) and (47) become
practically indistinguishable: see the bold curve (the second from the top).

3.3. Delta-potential

In the case of ‘very thin’ potentials with α � 1, the properties of the reflected packets depend,
as a matter of fact, on the single parameter K ≡ (κα)2. Indeed, for α � 1 and κα2 � 1,
and for not too large values of p̃, p̃ ∼ O(1) (which give the main contribution to all integral
characteristics of the packet), one can simplify the expressions in equation (59), obtaining the
following reflection and transmission coefficients:

|χ(p̃)|2 = K
K + p̃2

, |ζ(p̃)|2 = p̃2

K + p̃2
. (61)
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Figure 3. The momentum transformation coefficient (23) versus the dimensionless height of the
potentials κ for several fixed values of the dimensionless width α, for the Gaussian packet (50) and
two different potentials. Four lower curves correspond to the ‘pulse-like’ potential (47). The values
of the parameter α are as follows (from the bottom to the top): 0.1, 0.2, 0.5, 1.0. The bold curve
(the fifth from the bottom or the second from the top) corresponds to α = 10, and it is common for
the potential (47) and the ‘step’ potential (46) (with the same value of α). The uppermost curve
corresponds to the step potential with α = 0.001.

On the other hand, the expressions in (61) exactly coincide with the reflection and transmission
coefficients for the delta potential [31, 36]:

V (x) = Zδ(x), (62)

if one identifies Z = 2V0w, so that K = (msZC/h̄2)2. Therefore, the delta potential can be
used as a good simple approximation of very thin barriers (actually, this potential is frequently
used to model quite different phenomena in various fields of quantum physics: see, e.g., [37]
for one of the most recent reviews). Note that the coefficient K does not depend on the sign
of the potential strength Z , which means that the repulsive and attractive delta potentials give
rise to the same asymptotical probabilities and mean values.

We use the advantage of simple formulae (61) to analyse the difference between the
‘conditional’ and ‘unconditional’ mean values introduced in section 2.2. Calculating the
integrals (51)–(55) we obtain the following expressions:

〈p̃∞〉 = f (K)√
π

, 〈p̃∞〉R = 1√
π

1 + f (K)

1 + g(K)
, 〈p̃2

∞〉R = 1 + 2K[1 − g(K)]

2[1 + g(K)]
,

f (K) = K exp(K)E1(K), g(K) = 2R − 1 =
√

πK exp(K)erfc (
√

K).

Here

E1(x) =
∫ ∞

1

dt

t
exp(−xt) =

∫ ∞

x

dt

t
exp(−t) (63)

is the integral exponential function [38] and

erfc(z) = 2√
π

∫ ∞

z

exp(−y2) dy ≡ 1 − erf(z) (64)
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Figure 4. Three different momentum transformation coefficients (66) versus the scaled normalized
delta-potential strength K. The order of the curves from bottom to top: unconditional coefficient
η; conditional coefficient ηR; conditional coefficient η′

R.

is the complementary error function [39]. The momentum transformation coefficients

η = 〈p̃∞〉2/〈p̃2(0)〉, ηR = 〈p̃∞〉2
R/〈p̃2(0)〉, η′

R = 〈p̃∞〉2
R/〈p̃2

∞〉R (65)

depend only on K:

η = 2

π
[f (K)]2, ηR = 2

π

[
1 + f (K)

1 + g(K)

]2

, η′
R = ηR

1 + g(K)

1 + 2K[1 − g(K)]
. (66)

The plots of three functions (66) are shown in figure 4. The dependence η(K) is monotonous.
Therefore smaller values of the purity parameter C result in smaller values of η for a fixed value
of the delta-potential strength Z (except for the limit case of an impenetrable wall Z = ∞). But
two other dependences, ηR(K) and η′

R(K), are not monotonous. For this reason, highly mixed
states with C → 0 may possess the same values of the conditional momentum transformation
coefficients ηR and η′

R as pure states with C = 1. However, the dependences of ηR (and
especially η′

R) on K are rather weak, at least for K > 5.

3.4. The invariant uncertainty product

When studying the evolution of wavepackets, it is a common practice to calculate the
‘uncertainty product’ σxσp in order to estimate how close the packet is to the ‘minimal
uncertainty state’. For example, a fast growth of this product was interpreted in [40] as
an indication of the possibility of a ‘semiclassical chaos’ in quantum systems. As a matter of
fact, it is better to use the invariant uncertainty product (IUP)

� ≡ σxσp − σ 2
xp, (67)

which is invariant with respect to arbitrary linear canonical transformations (in this subsection
we use unscaled variables). The product (67) satisfies the Schrödinger–Robertson uncertainty
relation � � h̄2/4 [41–43]. Moreover, it does not depend on time for any quadratic
Hamiltonian with arbitrary time-dependent coefficients, being the simplest example of the so-
called universal quantum invariants [43–45]. For non-quadratic Hamiltonians (in particular,
for the free motion in the half-space x > 0 with an impenetrable boundary at x = 0) the
product (67), in general, depends on time. It was proposed in [46,47] to use the rate of change
of the function (67) (and of some other similar combinations) to classify the nonlinearities of
quantum mechanical systems.
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Figure 5. The asymptotical values of the normalized unconditional invariant uncertainty product
�̃∞ (68) (upper broken curve) and conditional invariant uncertainty product �̃∞

R (69) (lower full
curve) versus the dimensionless strength of the delta potential K for the initial Gaussian packet (24).

Using equations (35)–(37), one can verify that asymptotically, as t → ∞, the invariant
uncertainty product (67) goes to a large constant value proportional to x2

c . Therefore it is
convenient to introduce the dimensionless parameter �̃ ≡ �s2/(h̄xc)

2. Its asymptotical value
is (remember that L � 1/2 for symmetrical initial states)

�̃∞ = 〈k̃2〉(1 − 4L2) − 〈k̃∞〉2, (68)

where k̃ was defined in equation (25). Only in the case of ζ(k) = 2L = 1 does the right-hand
side of (68) become zero. But this is the case of free motion, when � preserves its initial value
(which does not depend on xc, so that it looks like zero in the scale in which xc/s � 1).

Equations (38)–(41) result in the following asymptotical constant value of the conditional
IUP (remember that R � 1/2 for symmetrical initial distributions):

�̃∞
R = 1

R2
[(2R − 1)(〈k̃2

∞〉R − 〈k̃∞〉2
R) − (〈k̃∞〉R − 〈k̃∞〉W)2]. (69)

In figure 5 we show the dependences of the unconditional and conditional (normalized) IUPs
�̃∞ and �̃∞

R on the dimensionless strength of the delta potential K for the initial pure Gaussian
packet (24). We see that two dependences are different, although they tend to the same limit
value 1

2 (1 − 2/π) ≈ 0.18 when K → ∞.

3.5. Reflection of ‘wide’ (shape-preserving) packets from the ideal wall

It seems worth giving an explicit example showing the qualitative difference between the
reflection of ‘narrow’ and ‘wide’ packets. This can be done, for example, in the case of
an ideal sharp boundary, when different families of exact solutions of the time-dependent
Schrödinger equation can be constructed. One of these families consists of the following
functions:

�(x, t) = 2x(m/h̄)3/4

π1/4 ε3/2
exp

[
imε̇x2

2h̄ε

]
, (70)

where ε(t) is a linear complex function of time:

ε(t) = b−1 + b(i + r)t, −∞ < r < ∞. (71)
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The positive coefficient b determines the initial width of the wavepacket, whereas the parameter
r is responsible for the initial correlation between the coordinate and momentum. The solutions
in the form (70) were considered in [6], while their generalizations to a more general potential
of the ‘singular oscillator’ with a time-dependent frequency were found in [48, 49].

For an arbitrary function ε(t), the average values of the position and momentum operators,
their products and squares in the state (70) are as follows:

〈x̂〉 = 2(h̄/mπ)1/2|ε|, 〈p̂〉 = 2(h̄m/π)1/2Re (ε̇ε∗)/|ε|,
〈x̂2〉 = 3h̄|ε|2/(2m), 〈x̂p̂ + p̂x̂〉 = 3h̄Re (ε̇ε∗), 〈p̂2〉 = 3h̄m|ε̇|2/2.

The specific feature of solution (70) is the conservation in time of the ratio of the coordinate
dispersion to the average coordinate:

ξ = √
σx/〈x̂〉 =

√
3π/8 − 1 ≈ 0.42. (72)

Hence the relative width of the packet (70) in the coordinate space is rather large, independently
of the function ε(t). The relative width of the packet in the momentum space,

√
σp/〈p̂〉,

depends on time, but asymptotically, as t → ∞, it goes to the same constant value ξ (72), if
the function ε(t) is given by equation (71). If 〈p̂(0)〉 = 0, then the momentum transformation
coefficient equals η = 8/(3π) ≈ 0.85.

The exact asymptotical (as well as the time-dependent) momentum probability density
does not exhibit any oscillations (contrary to the case of initial narrow packets)

P̃∞(P ) = 4π−1/2P 2 exp(−P 2), P > 0, P = p

b
√

mh̄(1 + r2)
.

Moreover, the solution of the Schrödinger equation in the form of the shape-preserving
wavepacket (70) possesses a time-independent universal uncertainty product

� = 3h̄2

4π
(3π − 8) ≈ 0.34h̄2

for any function ε(t) (71).

4. Discussion

We have studied the influence of different factors on the reflection of narrow slow quantum
packets from mirrors, having demonstrated that the form of the asymptotical momentum
distributions depends crucially on the ratio of the initial mean momentum in the direction
perpendicular to the surface of the mirror |p0| to the initial dispersion of this momentum
component

√
σp(0) ∼ h̄/s, where s is the initial uncertainty in the position of the quantum

particle (the centre of the wavepacket) in the perpendicular direction. If |p0| � h̄/s (the case
considered in most previous studies), then the asymptotical final momentum distribution is
simply the initial one reflected from the point p = 0 in the momentum space (for p0 < 0).
But, if |p0| � h̄/s, then the form of the final momentum distribution is essentially different
from the initial one. This results in a significant increase of the absolute value of the initial
momentum in the direction perpendicular to the mirror, so that the asymptotical mean value
p∞ can become of the order of h̄/s at the expense of ‘shrinking’ the momentum distribution.
In a sense, an opposite effect, when the packet moving in the direction to the ‘mirror’ (created
by the laser beam) ‘stops’ at the mirror, was discussed in [18]. However, this happens due to
the entanglement between the internal and translational degrees of freedom of a cold atom,
whereas the principal feature of the effect considered in our paper is its independence of the
internal state of the atom (although the parameters of this state may enter implicitly in the
potential responsible for the reflection).
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We have shown that the concrete parameters of the mirror potential (such as the height
V0 and the characteristic width w) are not very crucial for the effect discussed: if V0 is only a
few times bigger than the characteristic energy of the packet h̄2/(ms2), then the properties of
the reflected packet are close to those obtained in the approximation of an ideal impenetrable
wall.

In the three-dimensional case the phenomenon can be interpreted as the effect of quantum
deflection [22]. This effect, being almost trivial from the point of view of the theory of
wavepacket propagation, nonetheless can serve as an impressive demonstration of the quantum
nature of motion of ultraslow atoms. Indeed, let us make some evaluations, assuming that
p0 = 0. To prepare the initial state with the mean velocity directed along the surface and with
a small uncertainty in the transverse position, one could use a long thin ‘atom waveguide’ [50],
through which atoms could exit some trap where they have been cooled to the necessary low
energy. Methods of generating arbitrary quantum states of the centre of mass motion of cold
atoms have been proposed recently in [51]. The asymptotical mean value of the transverse
velocity (in the direction perpendicular to the mirror) is v∞ ≈ h̄/(2ms). Taking s = 10−6 cm,
we obtain v∞ ∼ 2 cm s−1 for Cs atoms and v∞ ∼ 2 m s−1 for hydrogen atoms. The ‘deflection
time’ equals, in order of magnitude, the time necessary to change the sign of the main part of
the negative components of the initial momentum distribution. For the packet with the initial
coordinate spread s, the most significant components in the momentum space are confined
in the interval |δp| ∼ h̄/s, and they will reach the boundary by the time mxc/|δp|, where
xc � s is the initial distance from the mirror. Thus we can evaluate the ‘deflection time’
as td ∼ msxc/h̄. Exact solutions for an ideal mirror considered in [22, 23] gave the same
result, with the numerical factor 4 on the right-hand side. Taking xc = 1 cm, which is quite
a macroscopic parameter (xc/s ∼ 106), we have td ∼ 1 s for Cs atoms and td ∼ 0.01 s
for hydrogen atoms. During this time the atom will pass about 2xc in the parallel direction
and about xc in the perpendicular direction. If the initial mean velocity of the particle in the
direction parallel to the mirror surface, v‖, is of the same order of magnitude as v∞ (which, in
turn, is a typical velocity in experiments with ultracold atoms [52]), then a significant deflection
can be quite observable. The effect is rather impressive from the classical point of view: a
particle passes 1 cm from the wall: nonetheless, in the absence of any visible force, it ‘feels’
the presence of the boundary and changes the direction of motion by 45◦ (or even more, if the
initial parallel velocity is less than v∞). For light atoms, from H to Be, one can increase the
initial distance even up to 10 cm.

Of course, there exist many difficulties which must be overcome in order to observe
the effect of quantum deflection. Some of them were discussed in [22, 23]. Among the
others, we can mention the broadening of the momentum distribution caused by spontaneous
emission [53]. Here we would like to draw attention to several interesting theoretical problems
emerging in connection with our study.

(1) We have shown that the mean values of the momentum and other observables depend
essentially on the experimental set-up, i.e. on the (im)possibility of observing the particle
behind the mirror. However, all results have been derived under the condition of unitarity
of evolution and its consequences, such as (3), (5) and (6). In real experiments with cold
atoms, if an atom striking the mirror is not reflected from it, it will hardly pass through the
mirror. Rather, it will be absorbed by it. Therefore, the case of absorbing atomic mirrors,
when the evolution is nonunitary, deserves further study.

(2) Studies of the nonunitary evolution seem to be important also from the point of view of the
problems of damping (relaxation) and decoherence between different components of the
packet. Indeed, the effect of deflection is a purely quantum one, because it is intimately
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connected with the ‘wave’ properties of matter, or, better, with the existence of quantum
interference phenomena. It is known, however, that the interaction with an ‘environment’
deteriorates the interference pictures. On the one hand, we have demonstrated that, for
highly reflecting mirrors and Gaussian packets, the momentum transformation coefficient
weakly depends on the degree of quantum purity, being practically the same for pure
and highly mixed quantum states. Therefore, preparing the initial packet in a highly
mixed state could give, in principle, some advantages, since one could start with a packet
having larger spatial width than pure ones with the same initial energy. On the other
hand, the interaction with an environment could cause the packet to spread faster than
in the case of free (unitary) evolution, thus diminishing the energy of fluctuations and
the mean momentum. The final effect depends, obviously, on the relations between the
deflection time and the times of decoherence and relaxation (thermalization). The known
experiments on the diffraction of atomic (electron, neutron, etc.) beams are in favour of
the assumption that decoherence is not essential in this case (otherwise such experiments
could not be performed). Moreover, there are models which show that, for instance, the
decoherence time due to the interaction with cosmic background radiation is very large
(exceeding the age of the universe) for microscopic quantum objects such as atoms [54].
However, many other possible mechanisms of decoherence and relaxation exist, as well
as many different models describing these mechanisms. Therefore studies of such models
taking account of reflection from boundaries could be interesting.

(3) We have shown that, in the presence of the wall, the absolute value of the mean momentum
of a particle is changed due to the deformation of the momentum distribution function.
But the ideal wall is the limiting case of repulsive potentials. Hence one may suppose
that the initial form of the wavepacket could be important in the processes of collisions
between ultracold particles, when absolute values of their initial mean momenta are less or
comparable with the square roots of the momenta dispersions. As a result of a distortion
of the shapes of the particle wavepackets during the collision, the absolute values of the
mean momenta will not be conserved. In this sense, the collisions between ultracold
particles turn out to be inelastic, as far as the initial states are not idealized plane waves,
but wavepackets of finite spatial extensions. This effect could be important for the physics
of ultracold atoms (in this connection see also, for example, the recent papers [55]).

(4) We have considered the effect of quantum deflection of single atoms. However, due to
the fast development of the theory and experiments with beams of atoms in the state of
the Bose–Einstein condensate (atomic lasers) [56], it would be interesting to see whether
the effect of quantum deflection exists for such beams. In this case we have to deal
with nonlinear modifications of the Schrödinger equation. Actually, the treatment of the
effect in our paper is based essentially on the superposition principle for De Broglie’s
waves, i.e. on the linearity of quantum mechanics. In the nonlinear case the situation
could be quite different. For example, nonlinear equations admit nonspreading beams in
free space. In such a case, one could suppose that no partial plane wave would reach the
boundary to be reflected from it; hence no quantum deflection would occur. Indeed, it
was shown recently [57] that the five-parameter family of the Stenflo–Sabatier–Doebner–
Goldin homogeneous generalizations of the Schrödinger equation [58–61] contains a
subfamily admitting the finite-length soliton solutions in the form (in the single space
dimension, for simplicity)

ψ(x, t) = {cos[γ (x − kt)]}1+δei(kx−ωt), |γ (x − kt)| < π/2,

whereas ψ(x, t) ≡ 0 if |γ (x − kt)| � π/2 and δ > 0. These solutions are continuous
and have continuous first derivatives. Other examples of equations admitting such
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‘compact ion’ solutions were considered in [62]. Since these solutions are equal to zero
identically outside some finite domain in the space, it is evident that any potential outside
this domain will not affect these solutions. Studying the possibility of quantum deflection
from mirrors for other kinds of nonlinear modifications of the Schrödinger equation, one
could establish new bounds on the coefficients of these equations.
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